Characterization and linear-time detection of minimal obstructions to concave-round graphs and the circular-ones property

نویسنده

  • Martín Darío Safe
چکیده

A graph is concave-round if its vertices can be circularly enumerated so that the closed neighbourhood of each vertex is an interval in the enumeration. In this work, we give a minimal forbidden induced subgraph characterization for the class of concave-round graphs, solving a problem posed by Bang-Jensen, Huang, and Yeo [SIAM J Discrete Math, 13:179– 193, 2000]. In addition, we show that it is possible to find one such forbidden induced subgraph in linear time in any given graph that is not concave-round. As part of the analysis, we obtain characterizations by minimal forbidden submatrices for the circular-ones property for rows and for the circular-ones property for rows and columns and show that, also for both variants of the property, one of the corresponding forbidden submatrices can be found (if present) in any given matrix in linear time. We make some final remarks regarding connections to some classes of circular-arc graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Essential obstacles to Helly circular-arc graphs

A Helly circular-arc graph is the intersection graph of a set of arcs on a circle having the Helly property. We introduce essential obstacles, which are a refinement of the notion of obstacles, and prove that essential obstacles are precisely the minimal forbidden induced circular-arc subgraphs for the class of Helly circular-arc graphs. We show that it is possible to find in linear time, in an...

متن کامل

Convex-Round and Concave-Round Graphs

We introduce two new classes of graphs which we call convex-round, respectively concave-round graphs. Convex-round (concave-round) graphs are those graphs whose vertices can be circularly enumerated so that the (closed) neighborhood of each vertex forms an interval in the enumeration. Hence the two classes transform into each other by taking complements. We show that both classes of graphs have...

متن کامل

Minimal Obstructions for Partial Representations of Interval Graphs

Interval graphs are intersection graphs of closed intervals. A generalization of recognition called partial representation extension was introduced recently. The input gives an interval graph with a partial representation specifying some pre-drawn intervals. We ask whether the remaining intervals can be added to create an extending representation. Two linear-time algorithms are known for solvin...

متن کامل

Linear-Time Algorithms for Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs

Tucker characterized the minimal forbidden submatrices of binary matrices that do not have the consecutive-ones property. We give a linear-time algorithm to find such a minimal one in any binary matrix that does not have the consecutive-ones property. Lekkerkerker and Boland characterized the minimal forbidden induced subgraphs for the class of interval graphs. We give a linear-time algorithm t...

متن کامل

On Finding Tucker Submatrices and Lekkerkerker-Boland Subgraphs

Lekkerkerker and Boland characterized the minimal forbidden induced subgraphs for the class of interval graphs. We give a lineartime algorithm to find one in any graph that is not an interval graph. Tucker characterized the minimal forbidden submatrices of matrices that do not have the consecutive-ones property. We give a linear-time algorithm to find one in any matrix that does not have the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1611.02216  شماره 

صفحات  -

تاریخ انتشار 2016